

Tetrahedron: Asymmetry 11 (2000) 371-374

New glyco-oxazolidin-2-ones as chiral auxiliaries in boronmediated asymmetric aldol reactions

Michael Stöver, Arne Lützen and Peter Köll*

University of Oldenburg, Department of Chemistry, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg, Germany

Received 29 October 1999; accepted 11 November 1999

Abstract

Two new chiral glyco-oxazolidin-2-one auxiliaries based on D-glucose are described. Some *N*-acyl derivatives were synthesized and used in dialkylboron-mediated asymmetric aldol reactions. All reactions delivered as the major diastereomer those predicted by the Zimmerman–Traxler model and were separated by column chromatography and mostly isolated in moderate to good yields. © 2000 Elsevier Science Ltd. All rights reserved.

Chiral oxazolidin-2-ones as introduced and developed by Evans and co-workers¹ have become versatile auxiliaries for various reactions in modern stereoselective synthesis. Based on a very simple approach to glyco-oxazolidin-2-ones, that was discovered in our laboratory in cooperation with Hungarian colleagues,² we recently reported on the D-xylose derived glyco-oxazolidin-2-ones 3,5-*O*-isopropylidene- and 3,5-*O*-benzylidene- α -D-xylofurano[1,2-d]oxazolidin-2'-one for the same purposes. Their practical value in the resolution of racemic carboxylic and sulfonic acids, in diastereoselective α -alkylations, α -acylations, α -halogenations and aldol reactions has been demonstrated.³

The success of these acetal protected reagents in stereoselective synthesis encouraged us to look for other glyco-oxazolidin-2-ones as chiral auxiliaries. We decided to explore the applicability of the two new compounds 3,5,6-tri-O-methyl-1-deoxy- α -D-glucofurano[1,2-d]-1',3'-oxazolidin-2'-one **4** and 3,5,6-tri-O-pivaloyl-1-deoxy- α -D-glucofurano[1,2-d]-1',3'-oxazolidin-2'-one **7**. Both are prepared from very inexpensive D-glucose. The use of methyl ether protecting groups in **4** and pivaloyl protecting groups in **7** were chosen to obtain auxiliaries that are more stable towards acidic conditions in order to employ them in reactions the previous auxiliaries could not be used for. Another interesting aspect is the different steric demand of these protecting groups. Because of their importance in the asymmetric construction of carbon–carbon bonds we decided to examine the performance of these new auxiliaries in some aldol additions.

The first step in the synthesis of auxiliary **4** was the permethylation of 1,2-*O*-isopropylidene- α -D-glucofuranose **1** (Scheme 1).⁴ After 1,2-deprotection of obtained compound **2** the resulting derivative **3** was converted into the target compound **4**.²

^{*} Corresponding author. E-mail: koell@uni-oldenburg.de

^{0957-4166/00/}\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. *PII:* S0957-4166(99)00503-0

Scheme 1. Synthesis of 3,5,6-tri-O-methyl-1- α -D-glucofurano[1,2-d]-1',3'-oxazolidin-2'-one 4. Reagents: (i) MeI, NaOH, DMF, 3.5 h, rt; (ii) acetic acid 50%, 100°C, 5 h; (iii) KOCN, NaH₂PO₄, H₂O, 2 h, 60°C

The synthesis of the pivaloyl protected auxiliary **7** was started by addition of potassium cyanate to D-glucose (Scheme 2).² The resulting oxazolidin-2-one **6** was smoothly converted into target compound **7** by addition of pivaloylchloride and pyridine in dichloromethane.⁵

Scheme 2. Synthesis of 3,5,6-tri-O-pivaloyl-1-deoxy- α -D-glucofurano[1,2-d]-1',3'-oxazolidin-2'-one 7. Reagents: (i) KOCN, NaH₂PO₄, H₂O, 2 h, 60°C; (ii) 1.2 equiv. pivaloychloride, pyridine, CH₂Cl₂, rt, 3 d

A number of different *N*-acyl substrates of both auxiliaries were easily prepared in good yields by accommodating Kunieda's technique using *N*,*N*-dimethyl-aminopyridine as catalyst⁶ in order to study the steric influence of the substituents in the α -position of the *N*-acyl moiety on the diastereoselectivity (Scheme 3, Table 1).

Scheme 3. N-Acylation procedure. Reagents: (i) 1.2 equiv. Et₃N, 0.2 equiv. DMAP, CH₂Cl₂, rt, 1 h

Table 1N-Acylation products of auxiliaries 4 and 7

auxiliary	R	R'	N-acyl derivative	yield
4	-CH ₃	-CH ₃	8	97 %
4	-CH ₃	$-C_2H_5$	9	91 %
4	-CH ₃	-C ₆ H ₅	10	44 %
7	-Piv	-CH ₃	11	87 %
7	-Piv	$-C_2H_5$	12	98 %
7	-Piv	-C ₆ H ₅	13	71 %

The formation of the boron enolates using dibutylboryltrifluoromethanesulfonate (n-Bu₂BOTf) and diisopropylethylamine (DPEA) and the subsequent aldol condensation was carried out by adapting a method by Evans et al. (Scheme 4, Table 2).⁷ For the reaction of the methyl ether protected *N*-acyl derivatives, dichloromethane was used as solvent, whereas diethyl ether was the solvent of choice for the reaction of the pivaloyl protected *N*-acyl precursors. The diastereomeric ratios were determined by ¹H NMR spectroscopy. In most cases it was possible to separate the major diastereomer by simple column chromatography in yields varying from 23 to 70%.

The high selectivities can be explained by applying the widely accepted Zimmerman–Traxler pericyclic chair-like transition state model.⁸ A non-chelated transition state is assumed to be responsible for

Scheme 4. Boron-mediated aldol reaction. Reagents: (i) 1.2 equiv. iPr₂NEt, 1.15 equiv. n-Bu₂BOTf, 0°C, 30 min; (ii) 1.1 equiv. R''CHO, -78°C, 20 min; (iii) 0°C, 1 h; (iv) pH 7 - phosphate buffer:methanol (2:3); (v) methanol:H₂O₂ (2:1) Table 2

	educt	aldehyde R''CHO	diastereomeric ratio ^a	configuration of major product	isolated yield of major product ^b
8	$(R' = -CH_3)$	-CH ₃	8:1	S 1	52 %
8	$(R' = -CH_3)$	-CH ₂ CH ₂ CH ₃	13 : 1	S_1	62 %
8	$(R' = -CH_3)$	-CH(CH ₃) ₂	8:1	S_1	67 %
8	$(R' = -CH_3)$	$-C_6H_5$	3:1	S_1	70 %
9	$(\mathbf{R'} = -\mathbf{CH}_2\mathbf{CH}_3)$	-CH ₃	3:1	S_1	c
9	$(\mathbf{R'} = -\mathbf{CH}_2\mathbf{CH}_3)$	-CH ₂ CH ₂ CH ₃	5:1	S_1	29 %
9	$(\mathbf{R'} = -\mathbf{CH}_2\mathbf{CH}_3)$	-CH(CH ₃) ₂	3:1	S_1	21 %
9	$(\mathbf{R'} = -\mathbf{CH}_2\mathbf{CH}_3)$	-C ₆ H ₅	5:1	S_1	30 %
10	$(R' = -C_6H_5)$	-CH(CH ₃) ₂	5:1	A_2	c
11	$(R' = -CH_3)$	-CH ₃	12:1	S_1	c
11	$(R' = -CH_3)$	-CH ₂ CH ₂ CH ₃	16 : 1	S_1	43 %
11	$(R' = -CH_3)$	-CH(CH ₃) ₂	16:1	S ₁	59 %
11	$(R' = -CH_3)$	$-C_6H_5$	8:1	S_1	47 %
12	$(\mathbf{R'} = -\mathbf{CH}_2\mathbf{CH}_3)$	-CH ₃	9:1	S_1	66 %
12	$(\mathbf{R'} = -\mathbf{CH}_2\mathbf{CH}_3)$	-CH ₂ CH ₂ CH ₃	6:1	S_1	50 %
12	$(\mathbf{R}' = -\mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{H}_3)$	-CH(CH ₃) ₂	8 : 1	S_1	53 %
12	$(\mathbf{R'} = -\mathbf{CH}_2\mathbf{CH}_3)$	-C ₆ H ₅	3:1	S_1	53 %
13	$(R' = -C_6H_5)$	-CH(CH ₃) ₂	8:1	A_2	23 %

^aDetermined by 500 MHz ¹H NMR spectroscopy using 1 D Win NMR software from Bruker. ^bAfter column chromatography.

^cThe major product could not be isolated in pure form.

the formation of the observed S1 and A2 major products. The four possible configurations are shown in Scheme 5.

Scheme 5. The four possible diastereomers

In the case of the non-arylic N-acyl derivatives this can be explained by the formation of a Z-enolate which is attacked from its less hindered re-face. However, the phenylacetyl derivatives 10 and 13 give rise to the *E*-enolate which is attacked from the *si*-face, resulting in the expected A₂ product. Not surprisingly, the observed selectivities are usually higher for the auxiliary 7 with its sterically more demanding pivaloyl protecting groups.

The absolute configurations were determined by the cleavage of some of the β -hydroxy acids from the auxiliaries using lithium hydroperoxide⁹ and subsequent comparison of the specific rotations with literature values. It should be noted that the auxiliaries could always be recovered in high yields.

The structures of all isolated compounds were confirmed by ¹H and ¹³C NMR spectroscopy, MS measurements, and microanalyses. According to these studies, **4** and **7** can be used as efficient chiral auxiliaries in stereoselective boron-mediated aldol reactions. Further investigations are in progress.

References

- 1. Evans, D. A.; Takaks, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. Pure Appl. Chem. 1981, 53, 1109–1127.
- (a) Kovács, J.; Pintér, I.; Lendering, U.; Köll, P. *Carbohydr. Res.* 1991, 210, 155–166; (b) Kovács, J.; Pintér, I.; Töth, G.; Györgydeák, Z.; Köll, P. *Carbohydr. Res.* 1993, 239, 95–106; (c) Kovács, J.; Pintér, I.; Abeln, D.; Kopf, J.; Köll, P. *Carbohydr. Res.* 1994, 257, 97–106; (d) Kovács, J.; Pintér, I.; Köll, P. *Carbohydr. Res.* 1995, 272, 255–262.
- 3. (a) Köll, P.; Lützen, A. *Tetrahedron: Asymmetry* **1995**, *6*, 43–46; (b) Köll, P.; Lützen, A. *Tetrahedron: Asymmetry* **1996**, *7*, 637–640; (c) Lützen, A.; Köll, P. *Tetrahedron: Asymmetry* **1997**, *8*, 29–32; (d) Lützen, A.; Köll, P. *Tetrahedron: Asymmetry* **1997**, *8*, 1193–1206.
- 4. Ciucanu, I.; Kerek, F. Carbohydr. Res. 1984, 131, 209-217.
- 5. Kunz, H.; Harreus, A. Liebigs Ann. Chem. 1982, 41-48.
- 6. Ishizuka, T.; Kunieda, T. Tetrahedron Lett. 1987, 28, 4185-4188.
- 7. (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. **1981**, 103, 2127–2129; (b) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. **1981**, 103, 3099–3111.
- 8. Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920-1922.
- 9. Evans, D. A.; Britton, T.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141-6144.